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Abstract—Obtaining ground truth for classification of remotely
sensed data is time consuming and expensive, resulting in poorly
represented signatures over large areas. In addition, the spec-
tral signatures of a given class vary with location and/or time.
Therefore, successful adaptation of a classifier designed from
the available labeled data to classify new hyperspectral images
acquired over other geographic locations or subsequent times is
difficult, if minimal additional labeled data are available. In this
paper, the binary hierarchical classifier is used to propose a knowl-
edge transfer framework that leverages the information extracted
from the existing labeled data to classify spatially separate and
multitemporal test data. Experimental results show that in the
absence of any labeled data in the new area, the approach is
better than a direct application of the original classifier on the
new data. Moreover, when small amounts of the labeled data
are available from the new area, the framework offers further
improvements through semisupervised learning mechanisms and
compares favorably with previously proposed methods.

Index Terms—Hierarchical classifier, knowledge transfer, multi-
temporal data, semisupervised classifiers, spatially separate data.

I. INTRODUCTION

COMMON application of hyperspectral imaging in-
volves mapping spectral signatures in the images to spe-

cific land-cover types. While hyperspectral data are now readily
available, obtaining reliable and accurate class labels for each
“pixel” is a nontrivial task involving expensive field campaigns
and time-consuming manual interpretation of imagery. Typi-
cally, the labeled ground-truth data are acquired over spatially
contiguous sites that are easily accessible. Such “spatially lo-
calized” data are then used to classify the entire hyperspectral
image including those regions, from which no labeled data were
obtained [1], [2]. Implicit in this method of classification is the
assumption that the spectral signatures of each land-cover type
do not exhibit substantial spatial (or temporal) variations. How-
ever, factors such as soil composition, topographic variations,
and local atmospheric condition alter the spectral characteris-
tics measured at the sensor, even though they correspond to the
same land-cover type, from one region to another. Moreover,
airborne hyperspectral data for an area of interest are typically
obtained over multiple flightlines. In such cases, factors such
as bidirectional reflectance can cause further variations in the
class-specific spectral signatures. Hence, the naive use of a
classifier which is trained on the available ground-truth data
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from one region on data that are from spatially or temporally
different areas without accounting for the variability of the class
signatures, will result in poor classification accuracies [3], [4].
Theoretically, an ideal approach would be to pool the data from
all regions of interest to train a classifier that performs well
over all the regions. However, researchers are typically unable
to follow this path.

In this paper, we study a more feasible middle ground of
exploiting certain properties of a classifier which is trained
using the data acquired from one area to help classify the
data obtained from spatially and temporally different areas.
Thus, a key idea in our framework is to exploit the contextual
information in existing classifiers for rapidly constructing a
new classifier for a new but related problem, even with little
additional labeled data. Specifically, we use a multiclassifier
system called the binary hierarchical classifier (BHC) [5] for
this purpose. The BHC automatically derives a hierarchy of the
target classes based on their mutual affinities. This hierarchy,
along with the features extracted at each node of the BHC tree,
facilitates the transfer of knowledge from an existing classifica-
tion task to another related task. The available unlabeled data
are then used to update the existing BHC via semisupervised
learning techniques in order to better reflect the statistics of
the data from new areas. Besides the unsupervised setting,
the framework presented here can also be utilized when very
small quantities of the labeled data are available from the
spatially or temporally separate areas. We present results of
experiments that demonstrate the advantages of our proposed
framework over other powerful multiclassifier systems, such as
the error correcting output code (ECOC) [6], for the purposes
of knowledge transfer in hyperspectral data.

II. RELATED WORK

This paper focuses on the problem of adapting a hyperspec-
tral classifier to generate land-cover labels for future incoming
data from a spatially or temporally different image. The note-
worthy characteristics of this classification task are:

1) availability of large quantities of unlabeled data;

2) possibility of a population drift in the unlabeled data.

A. Semisupervised Classification and Transfer Learning

Several machine-learning approaches have been proposed to
deal with certain aspects of the problem stated above.
Incorporating unlabeled data into the classification task:
Given a mixture of labeled and unlabeled data, the semisu-
pervised classification algorithms [7] try to improve the clas-
sification accuracy by making use of unlabeled data to obtain
better classification boundaries. Semisupervised methods that
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make use of expectation maximization (EM) have met with a
considerable success in a number of domains, especially that
of text data analysis and remote sensing. These algorithms
attempt to maximize the joint log-likelihood of both the la-
beled and the unlabeled data by iteratively reestimating the
conditional distribution of a hidden variable, indicating the true
class associated with the unlabeled data. It is important to note
that the standard formulation for semisupervised classification
techniques assumes that both the labeled and unlabeled data
have a common underlying distribution. This assumption is
violated for the application scenario considered in this paper,
since it is likely that the statistics of the unlabeled data differ
somewhat from that of the previously acquired labeled data, i.e.,
there is a population drift [8].

Classification in the presence of population drift: Several
attempts at dealing with the problem of changing populations
have borrowed ideas from the field of online learning or in-
cremental learning. Most online algorithms are designed as
feedback systems. It is assumed that there is a steady stream
of objects to be classified, the true labels of which are revealed
immediately after classification. Prior knowledge about the type
of the population drift (random/gradual/sudden) is then used
to update the existing classifier at regular intervals [8], [9].
The online algorithms attempt to minimize the cumulative
number of errors made, such that the resulting classifier does
not perform much worse than a classifier trained on the same
data in batch mode. A detailed review of several online-learning
algorithms is provided in [10].

Adapting online methods to deal with the problem of pop-
ulation drift typically involves maintaining a window of the
incoming training samples. At appropriate intervals, the set of
hypotheses is either retrained, or some of the outdated hypothe-
ses are removed and replaced with those that are more con-
sistent with the recently seen observations [9]. While remotely
sensed data obtained over extensive regions (or different times)
also exhibit the problem of “population drift,” unlike the online
frameworks, one does not have access to a streaming set of
labeled data samples.

Knowledge transfer and reuse: The vast majority of
works in machine learning and data mining focuses on solving
a specific classification task, which is isolated from other tasks.
However, in practice, one is often faced by a series of (possibly
related) tasks, or a task whose nature changes substantially with
time. Existing techniques require large quantities of labeled
data to be able to deal effectively with the changes in a
classification task. The question then is, can one transfer the
knowledge in a previously learned classifier to better tackle
the latest classification task, instead of totally reinitiating the
analysis, as is usually done?

In the mid-1990s, a first generation of approaches that in-
volved explicit knowledge transfer/reuse emerged, under labels
such as “knowledge transfer,” “learning to learn,” context sen-
sitivity/drift, and “lifelong learning” [11]-[13]. For instance,
several researchers attempted to directly reuse the internal state
information from classifiers under the belief that related classi-
fication tasks may benefit from common internal features. Some
of the other approaches of knowledge reuse include the use
of supplemental training examples or historical training infor-
mation, such as learning rates, reusing the labels produced by
original classifiers to improve the generalization performance
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on a new classifier for a different but related task, and multitask
learning neural networks that are trained simultaneously to
perform several related classification tasks.

B. Semisupervised Learning and Knowledge Transfer for
Remote Sensing Applications

The advantages of using unlabeled data to aid the classifi-
cation process in the domain of remote sensing data was first
identified and exploited by Shahshahani and Landgrebe [1].
In this work, they made use of the unlabeled data via EM
to obtain better estimates of class-specific parameters. It was
shown that using unlabeled data enhanced the performance
of the maximum a posteriori probability (MAP) classifiers,
especially when the dimensionality of the data approached the
number of training samples. Subsequent extensions to the EM
approach include using “semilabeled” data in the EM iterations
[14], [15]. In these methods, the available labeled data are first
used to train a supervised classifier to obtain tentative labels
for the unlabeled data. Semilabeled data, thus obtained, are
then used to retrain the existing classifier, and the process is
iterated until convergence. Note that these methods assume that
the labeled and the unlabeled data are drawn from the same
distribution. In other words, the estimated class parameters
are considered unreliable because of the nonavailability of the
labeled data and not because of changes in the underlying data
distribution.

Besides the typical semisupervised setting, unlabeled data
have also been utilized for “partially supervised classification”
[16], [17]. In partially supervised classification problems, the
training samples are provided only for a specific class of in-
terest, and the classifier must determine whether the unlabeled
data belong to the class of interest. While Mantero et al. [17]
attempt to model the distribution of the class of interest and
automatically determine a suitable “acceptance probability,”
Jeon and Landgrebe [16] make use of the unlabeled data while
learning a maximum-likelihood (ML) classifier to determine
whether a data point is of interest or not.

While all these methods deal with the data obtained from the
same image, the possibility that the class label of a pixel could
change with time was first explored in [18]. In this work, the
joint probabilities of all possible combinations of classes be-
tween the multitemporal images were estimated and used in the
classification rule. The proposed “multitemporal cascade clas-
sifier,” however requires the labeled data from all the images
of interest. More recently, unsupervised algorithms, which can
automatically detect whether a particular pixel in multitemporal
images has changed have also been proposed [19]. Besides
algorithms for change detection, supervised algorithms which
automatically try to model the class transitions in multitemporal
images have also been developed [20]. Another supervised
attempt at classifying multitemporal images involves building a
local classifier for each image, the decisions of which are then
combined, either via a joint likelihood-based rule or a weighted
majority decision rule that takes into account the reliabilities
of the data sets and that of the individual classes, to yield a
“global” decision rule for the unlabeled data [21]. Similarly,
other spatial-temporal methods utilize the temporal correlation
of the classes between images to help improve the classification
accuracy [22], [23].
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A pioneering attempt at unsupervised knowledge transfer for
multitemporal remote sensing images was made in [3]. In this
work, the authors consider a fixed set of land-cover classes
whose spectral signatures vary over time. Given an image t;
of a certain land area with a labeled training set, the problem
is to classify pixels of another image ¢5 of the same land area
obtained at a different time. An ML classifier is first trained on
the labeled data from ¢;, assuming the class-conditional density
functions are Gaussian. The mean vector and the covariance
matrix of the classes from ¢; are used as initial approximations
to the parameter values of the same classes from ¢5. These
initial estimates to the classes from ¢, are then improved via EM
using the corresponding unlabeled data. Experimental results
later revealed that the simple ML-based knowledge transfer
did not perform as expected for “complex” data sets [24]. The
authors therefore recommend using an ensemble of “comple-
mentary” classifiers. In particular, the ML classifier and two
radial basis function (RBF) neural networks were first trained
on the labeled data from ¢;. The classifiers, thus obtained,
were then updated using the unlabeled data from ¢, via EM.
The results of the ensemble were then combined either by a
majority voting, a Bayesian combination method, or by the
MAP rule. For these experiments, the ensemble yielded higher
classification accuracies than the EM-updated ML classifier.

While Bruzzone et al. [3], [24] demonstrate the advantage
of using previously acquired knowledge in classifying a novel
image, the amount of knowledge transferred was restricted by
the classifiers under consideration, namely the ML and the RBF
neural net classifier. The only knowledge from the training
data that was transferred in this framework was the set of
estimates of the parameters of the class distributions modeled
as Gaussians. Using other classifier systems might enable one
to extract and transfer more information from the available
training data. It is in this context that we propose using the BHC
as the classifier in our knowledge transfer framework.

C. BHC

The BHC [5] is a multiclassifier system that was devel-
oped primarily to deal with multiclass hyperspectral data.
The BHC involves recursively decomposing a multiclass
(C-classes) problem into (C' — 1) binary metaclass problems,
resulting in (C — 1) classifiers arranged as a binary tree.
The given set of classes is first partitioned into two disjoint
metaclasses, and each metaclass, thus obtained, is partitioned
recursively until it contains only one of the original classes. The
number of leaf nodes in the tree is thus equal to the number of
classes in the output space. The partitioning of a parent set of
classes into metaclasses is not arbitrary, but is obtained through
a deterministic annealing process, which encourages similar
classes to remain in the same partition [5]. To combat the small
sample size problem in analyzing the hyperspectral data, the
dimensionality of the feature space is reduced by recursively
combining highly correlated adjacent bands [25]. This “best
bases” method of a feature extraction, which makes use of
the class information as the correlation between bands, varies
among the classes, thereby yielding an interpretable feature
space.

The BHC offers comparable classification accuracies to those
achieved by other multiclassifier systems such as the ECOC
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[26], but it seems more suitable for knowledge transfer than
other alternatives as it reveals additional knowledge. The hierar-
chy of classes, for instance, might be useful as the relationships
between classes in one area might still hold in another area.
Further, since the best bases feature-extraction method makes
use of class-specific information in determining the set of
adjacent bands that are to be merged, this information can also
be exploited in the new area. Finally, the Fisher discriminant
makes use of both within-class and between-class covariances,
which can also be helpful, as we might expect similar correla-
tions between the classes in the new area.

The generalization ability of the BHC used within a random
forest framework for the analysis of spatially separate data
was studied in [4]. The random forest technique improves
performance but does not explicitly transfer any knowledge
from an existing forest of BHCs to the new classification
problem. The first attempt at transferring the information from
an existing BHC to classify a new region with no ground-truth
data is described in [27]. The proposed method made use of
the Fisher discriminant associated with each metaclass pair
to project new unlabeled data into the corresponding Fisher
space. The projected data were then clustered using the k-means
algorithm. Finally, the resulting clusters were assigned to the
metaclasses, such that the distances between the cluster centers
and the corresponding metaclass means were minimized. The
resulting “pseudo-labeled” data were used to update the para-
meter estimates in the BHC tree. It was found that while the
updated classifier improved the classification accuracies on one
hyperspectral data set, its performance on another data set was
slightly worse than the naive application of the existing BHC to
the unlabeled data.

III. KNOWLEDGE TRANSFER FRAMEWORK

Let us assume that we have the hyperspectral data from
two spatially (or temporally) different areas, Area 1 and 2.
Let us also suppose that for Area 1, there is an adequate
amount of labeled data to build a supervised classifier. We
first consider the situation where all the data from Area 2 are
unlabeled (unsupervised case). Subsequently, the impact on
design and performance of the proposed framework is studied
when labels are provided for a small part of the data from
Area 2 (semisupervised case).

A. Unsupervised Case

In the absence of any labeled data from Area 2, the first step
in the knowledge transfer framework is to use the training data
from Area 1 to generate the corresponding BHC tree. We then
attempt to transfer the knowledge in this BHC to Area 2.

Our first approach was to use the hierarchy of the classes
and the best bases feature extractors of the BHC classifier
built on the Area 1 data, but modify the Fisher feature ex-
tractors and the binary classifiers to account for the changed
statistics of the spatially separate data. This was achieved via
the EM framework, in which the training data were used to
initialize the EM algorithm, and the data from Area 2 were
treated as unlabeled. At each node, the corresponding Fisher
extractor was first used to project the data from both Area 1 and
Area 2 into a reduced dimensionality space. The metaclasses at
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the node were modeled using mixtures of Gaussians, with the
number of Gaussians corresponding to the number of classes
at that node. The initial parameters of the Gaussians were
estimated using the corresponding class data from Area 1. In the
E-step of the algorithm, the Gaussians were used to determine
the posterior probabilities of the Area 2 data. The probabilities,
thus estimated, were then used to update the parameters of
the Gaussians (M-step). EM iterations were performed until
the average change in the posterior probabilities between two
iterations was smaller than a specified threshold [3]. A new
Fisher feature extractor was also computed for each EM iter-
ation, which is based on the statistics of the metaclasses at that
iteration. The updated extractor was then used to project the
data into the corresponding Fisher space prior to the estimation
of the class-conditional pdfs.

Analysis of the results showed that while this approach
yielded somewhat higher overall classification accuracies than
a direct application of the original classifier, the errors were
mostly concentrated in a few classes. A closer inspection re-
vealed that the spectral signatures of these classes had changed
sufficiently for them to be grouped differently in the BHC
hierarchies, if there had been adequate amounts of labeled data
from Area 2. This suggested that we should have obtained
multiple trees from Area 1, such that some of them would be
more suitable for the new area.

Thus, our second approach was to introduce randomization
into the structure of the BHC tree. The design space for the
BHC offers many possibilities for randomizing the tree struc-
ture. In our earlier work [28], we generated randomized BHC
trees by varying factors such as the percentage of the available
training data, the number of features selected at each node,
class priors, and by randomly switching the class labels for
a small percentage of the labeled data points. In this paper,
randomized BHC trees were generated by choosing an internal
node of the tree and randomly interchanging the classes drawn
from its right and left children. The corresponding feature
extractors and classifiers at that node (and its children) were
then updated to reflect the perturbation. Note that in the absence
of any labeled data from Area 2, there is no way to evaluate
which of the randomly generated BHC trees best suits the
spatially/temporally different data. Hence, we can only generate
an ensemble of classifiers using the training data, hoping that
the ensemble contains some classifiers that are better suited
to Area 2.

The key to the success of an ensemble of classifiers is
choosing the classifiers that make independent errors. If the
classifiers are not independent, the ensemble might actually
perform worse than the best member of the ensemble. Hence, a
number of measures of diversity have been proposed to choose
a good subset of classifiers [29]. Of the ten diversity measures
studied, the authors recommend the .y, the pa.y, and the k
measures for their easy interpretability. They further promote
the ()-diversity measure because of its relationship with the
majority vote of an ensemble and its ease of calculation. Hence,
we made use of the @)-diversity measure in our earlier study
[28]. However, on experimenting with the x measure [30], we
found that it yielded a comparable, if not better, performance in
the sense of resulting overall classification accuracy than that of
the () measure. Further, unlike the @-diversity measure, the
measure does not require access to any labeled data. Hence, in
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this paper, the x-diversity measure, which indicates the degree
of disagreement between a pair of classifiers, was used to ensure
the diversity of our classifier ensemble.

The data from Area 2 were labeled using each tree in the
classifier ensemble, and these labels were then used to obtain
the x measure between each pair of classifiers. The classifica-
tion results of a smaller set of classifiers with the lowest average
pairwise x measure (i.e., higher diversity) were then combined
via a simple majority voting.

B. Semisupervised Case

If small amounts of labeled data are available, knowledge
transfer mechanisms can improve classification accuracies, es-
pecially if they exploit the added information. In this section,
we generalize both knowledge transfer methods in order to
leverage the labeled data and determine how much labeled data
are required from the spatially separate area before the advan-
tages of transferring information from the original solution are
no longer realized.

The ensemble-based approach was modified in two stages.
First, after the set of classifiers was pruned to improve the
diversity of the ensemble by using the x-diversity measure, we
further pruned the remaining set of classifiers to include only
those which had yielded higher classification accuracies on the
labeled data. A scheme similar to the online weighted majority
algorithm [31], which assigns all classifiers a weight, was then
used to weight the different classifiers. Prior to learning, the
weights of all the classifiers are equal. As each data sample
is presented to the ensemble, a classifier’s weight is subse-
quently reduced multiplicatively, if that example is misclassi-
fied. For each new example, the ensemble then returns the class
with the maximum total weighted vote over all the classifiers.
Thus, the algorithm used for computing the class label predicted
by the BHC ensemble is as follows.

Weighted majority vote for BHC ensemble

1) Initialize the weights wy, ..., w, of all n BHCs to 1.

2) For each labeled data point, let yy,...,y, be the set of

class labels predicted by the BHCs.

3) Output class h; if Vh; # h;, j =1,...,m, where m is

the number of classes

n n

Z wg > Z Wi .

k=1iyr==h; k=1yp,==h;

4) On observing the correct class label, if h; is wrong, then
multiply the weight of each incorrect BHC by 0.5; else if
h; is correct, do not modify the weights.

At the end of this learning, the “winnowing property” of
the weighted majority scheme assigns lower weights to those
classifiers with poorer classification accuracies on the incoming
data. Thus, by reducing the contribution of the inaccurate
classifiers to the final decision, the voting scheme ensures that
the performance of the ensemble is not much worse than that
of the best individual predictor, regardless of the dependence
between the members of the ensemble [31]. For the semisu-
pervised implementation, the EM-based method was modified
to perform a constrained EM. Here, the E-step only updates
the posterior probabilities (memberships) for the unlabeled data
while fixing the memberships of the labeled instances according
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to the known class assignments [32]. The labeled data were also
used to initialize the mean vectors and the covariance matrices
of the metaclasses at the nodes of the binary trees in the
k-diversity measure pruned ensemble. The labeled and the
unlabeled data from Area 2 were then used for constrained EM
while updating the Fisher extractors in each of the binary trees.
The classification results of the resulting ensemble were then
combined using the weighted majority algorithm as detailed
previously.

IV. EXPERIMENTAL EVALUATION

In this section, we provide empirical evidence that in the
absence of labeled data from the spatially/temporally sepa-
rate area, using knowledge transfer is better than the direct
application of existing classifiers to this new area. We also
present results showing that with small amounts of the labeled
data from the new areas, our framework yields higher overall
accuracies for our experiments than the current state-of-the-
art ECOC multiclassifier system [6] with support vector ma-
chines (SVMs) [33] as the binary classifiers. Besides the ECOC
classifier, we also compare our framework with two EM-based
ML (ML-EM) techniques. The first ML-EM classifier is the
unsupervised approach suggested in [1]. The second method
is the knowledge transfer method proposed in [3], which we
refer to as a seeded ML-EM, since it uses the Area 1 data
only to initialize the Gaussians prior to performing the EM
iterations. The parameters of the Gaussians and the Fisher
feature extractors are then updated using the unlabeled data
(and, if available, labeled data) from Area 2 via EM.

A. Data Sets

The knowledge transfer approaches described above were
tested on the hyperspectral data sets obtained from two sites:
NASA’s John F. Kennedy Space Center (KSC), Florida [27] and
the Okavango Delta, Botswana [4].

1) KSC: The NASA Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) acquired the data over the KSC on
March 23, 1996. AVIRIS acquires data in 242 bands of 10-nm
width from 400-2500 nm. The KSC data, which are collected
from an altitude of approximately 20 km, have a spatial reso-
lution of 18 m. Removal of noisy and water absorption bands
resulted in 176 candidate features. Training data were selected
using land-cover maps derived by the KSC staff from color in-
frared photography, Landsat Thematic Mapper (TM) imagery,
and field checks. Discrimination of land-cover types for this
environment is difficult, due to the similarity of the spectral sig-
natures for certain vegetation types and the existence of mixed
classes. The 512 x 614 spatially removed test set (Area 2)
is a different subset of the flight line than the 512 x 614 data
set from Area 1 [34]. While the number of classes in the two
regions differs, we restrict ourselves to those classes that are
present in both regions. Details of the ten land-cover classes
considered in the KSC area are in Table I.

2) Botswana: This 1476 x 256 pixel study area is located
in the Okavango Delta, Botswana, and has 14 different land-
cover types consisting of seasonal swamps, occasional swamps,
and drier woodlands located in the distal portion of the delta.
Data from this region were obtained by the NASA Earth
Observing 1 (EO-1) satellite for the calibration/validation por-
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TABLE 1
CLASS NAMES AND NUMBER OF DATA
POINTS FOR THE KSC DATA SET

[ No. | Class Name [ Areal | Area2 |

1. Scrub 761 422
2. | Willow Swamp 243 180
3. CP Hammock 256 431
4. CP/Oak Hammock 252 132
5. Slash Pine 161 166
6. Oak/ Broadleaf Hammock 229 274
7. | Hardwood Swamp 105 248
8. Graminoid Marsh 431 453
9. Salt Marsh 419 156
10. | Water 927 1392
TABLE 1I

CLASS NAMES AND NUMBER OF DATA POINTS
FOR THE BOTSWANA DATA SET

[ No. | Class Name | Area 1 | Area2 |

1 Water 270 126
2 Hippo Grass 101 162
3 Floodplain Grasses 1 251 158
4. | Floodplain Grasses 2 215 165
5. Reeds 269 168
6 Riparian 269 211
7 Firescar 259 176
8 Island Interior 203 154
9. Acacia Woodlands 314 151
10. | Acacia Shrublands 248 190
11. | Acacia Grasslands 305 358
12. | Short Mopane 181 153
13. | Mixed Mopane 268 133
14. | Exposed Soils 95 89

tion of the mission in 2001. The Hyperion sensor on EO-1
acquires data at 30-m pixel resolution over a 7.7-km strip in
242 bands, covering the 400-2500-nm portion of the spec-
trum in 10-nm windows. Uncalibrated and noisy bands that
cover water absorption features were removed, resulting in
145 features. The land-cover classes in this study were chosen
to reflect the impact of flooding on vegetation in the study
area. Training data were selected manually using a combination
of global positioning system (GPS)-located vegetation surveys,
aerial photography from the Aquarap (2000) project, and 2.6-m
resolution IKONOS multispectral imagery. The spatially re-
moved test data for the May 31, 2001 acquisition were sam-
pled from spatially contiguous clusters of pixels that were
within the same scene, but disjoint from those used for the
training data [34]. Details of the Botswana data are listed
in Table II.

Multitemporal data: In order to test the efficacy of the
knowledge transfer framework for multitemporal images, data
were also obtained from the Okavango region in June and
July 2001. While the May scene is characterized by the onset
of the annual flooding cycle and some newly burned areas,
the progression of the flood and the corresponding vegetation
responses are seen in the June and July data. The Botswana
data acquired in May had 14 classes, but only nine classes
were identified for the June and July images, as the data were
acquired over a slightly different area due to a change in
the satellite pointing. Additionally, some classes identified in
the May 2001 image were excessively fine grained for this
sequence, so the data were aggregated in some finer grained
classes. The classes representing the various land-cover types
that occur in this environment are listed in Table II1.
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TABLE III
CLASS NAMES AND NUMBER OF DATA POINTS FOR
THE MULTITEMPORAL BOTSWANA DATA SET

[ No. | Class Name [ May [ June [ July

1. | Water 118 | 195 | 185
2. | Primary Floodplain | 171 192 96

3. | Riparian 177 | 179 | 164
4. | Firescar 133 196 | 186
5. | Island Interior 137 197 | 131
6. | Woodlands 149 | 218 | 169
7. | Savanna 121 189 | 171
8. | Short Mopane 93 166 | 152
9. | Exposed Soils 83 156 96

B. Experimental Methodology

In all the data sets, the labeled data (Area 1) were subsam-
pled, such that 75% of the data were used for training and 25%
as the test set. For both cases, a second test set was also acquired
from the spatially/temporally separate region (Area 2). Since
the Area 2 test set was from a different geographic location, or
was obtained at a different time, factors such as localized geo-
morphology, meteorology, and atmospheric conditions as well
as changes in bidirectional reflectance and plant physiology
resulted in different hyperspectral signatures. Along with the
changes in the a priori probabilities of the land-cover classes,
these data provide an ideal setting to test the knowledge transfer
framework.

For our experiments, we used a BHC based on the Fisher-m
feature extractor, and the posterior probabilities were obtained
by soft combining. Adjacent hyperspectral bands that were
highly correlated were merged using the best bases feature-
extraction technique [25] prior to applying the Fisher feature
extractor. Merging was performed until the ratio of the training
samples to the number of dimensions was at least five at each
node of the classifier tree [35]. For both the unsupervised and
the semisupervised cases, the classification accuracies were ob-
tained by averaging over five different samplings of the training
data (from Area 1) or the labeled Area 2 data, respectively.

The ensemble of the BHC trees was generated by switching
randomly chosen sibling classes of the original BHC tree. The
feature extractors and the classifiers of the corresponding node
and that of its children were then updated to reflect the per-
turbation. One hundred different randomized BHC trees were
generated. The k-diversity measure was then used to prune
the ensemble, such that the final ensemble contained the ten
classifiers with the lowest average pairwise x measure. Earlier
experiments with a larger pool of randomized trees, from which
the ten most diverse classifiers were chosen, yielded similar
results [28]. Note that there are no well-defined methods for
determining the number of classifiers to be used in an ensemble.
For our purposes, we found that generating 100 randomized
trees formed an adequate initial pool of classifiers, from which,
we selected ten.

For the semisupervised scenario, using very small amounts of
labeled data to estimate the class covariance matrices resulted in
ill-conditioned matrices. In the knowledge transfer framework,
the class covariance matrices were initially stabilized by pool-
ing the corresponding training data from Area 1, and the labeled
data from Area 2 to estimate the covariance matrices. Similarly,
while building a new BHC using the available Area 2 data,
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the estimates of the ill-conditioned class covariance matrices
at a particular node were stabilized by using the data points
associated with the corresponding parent node.

Both the ML-EM classifiers were modeled using a multi-
variate Gaussian for each class. As in the case of the BHC-
based knowledge transfer, the best bases feature extractor and
the Fisher discriminant were used to reduce the dimensionality
of the input data. The number of best bases was determined
by using a validation set from the Area 1 training data. For
the unsupervised case, the best bases feature extractor was
transferred from Area 1 to Area 2. Area 2 data were treated
as the unlabeled data, and EM iterations were performed as
detailed in Section III-A. For the semisupervised scenario,
the constrained EM was used to update the parameters of the
Gaussians as well as the Fisher discriminant.

For the ECOC-SVM systems, the guidelines provided in [6]
were used to generate the appropriate code matrices. In our
paper, we used the following:

1) dense random code method of [36] for the KSC and the
multitemporal data sets;

2) BCH code matrix from [37] for the spatially separate
Botswana data set.

SVMs with Gaussian kernels were trained for each binary
problem induced by the code matrix [6]. The SVM classifiers
were implemented in MATLAB using the package provided in
[38]. Prior to SVM classification, each feature in the training
data was normalized to have a zero mean and unit variance.
The features of the corresponding test set were also scaled
with the means and variances computed from the training data.
The parameters (Gaussian kernel width and the upper bound
on the coefficients of the support vectors, “C”) of each SVM
were identified by threefold cross validation, using 40% of the
available training data as the validation set. Different values for
the Gaussian kernel widths were evaluated empirically, and the
parameter, which had the least classification error over the three
validation sets, was finally used. Having fixed the kernel width,
a similar process was used to tune the “C”” parameter.

C. Results and Discussion

Unsupervised case: First, the BHC, the ECOC-SVM, and
the BHC ensemble built on the training data from Area 1 were
used without any modification to classify the data from Area 2.
Tables IV and V contain the overall classification accuracies,
along with the standard deviations of the overall accuracies,
which are obtained by the baseline and the knowledge transfer
approaches on the Area 2 data.

As a frame of reference, for the spatially separate data, the
classification accuracies on the Area 1 test set for the BHC,
ECOC-SVM, and ML + EM are 93.05%(=£1.17), 93%(+1.03),
and 89.15%(+1.28) for the KSC data set. For the Botswana
data set, the corresponding -classification accuracies are
94.52%(+£0.79), 95.63%(40.95), and 93.57%(+1.63), respec-
tively. The substantial reduction in overall classification accu-
racies when the original classifiers were applied to spatially
separate test cases shows that there is a significant difference
between Area 1 and Area 2. Because of greater homogeneity
within the scene, the Botswana data set benefits much more
from the information in Area 1 than the KSC (Table IV).
The greater disparity in the spectral signatures of the classes
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TABLE 1V
AVERAGE UNSUPERVISED CLASSIFICATION ACCURACIES FOR THE SPATIALLY SEPARATE TEST SETS

Baselines Knowledge Transfer Approaches
Name Orig. BHC | Orig. ECOC | Ensemble BHC MLA+EM Orig. BHC Ensemble BHC Seeded
+SVM +Maj. Vote +EM +EM +Maj. Vote MLA+EM
KSC 61.47 (0.32) | 64.27 (0.21) 65.34 (0.36) 63.39 (0.50) | 62.50 (0.72) 67.92 (0.80) 64.03 (0.75)
Botswana | 74.12 (1.2) 75.22(0.29) 73.69 (0.90) 80.11 (0.37) | 82.30 (0.76) 82.95 (1.2) 84.42 (0.97)
TABLE V
AVERAGE UNSUPERVISED CLASSIFICATION ACCURACIES FOR THE MULTITEMPORAL TEST SETS
Baselines Knowledge Transfer Approaches
Name Orig. BHC | Orig. ECOC | Ensemble BHC | ML+EM | Orig. BHC | Ensemble BHC Seeded
+SVM +Maj. Vote +EM +EM +Maj. Vote | MI+EM
Botswana 49.41 69.09 49.14 60.95 71.27 73.11 57.39
May to June (1.4) (0.31) (1.31) (8.9 (3.6) (2.1) (11.1)
Botswana 71.28 73.10 72.04 63.81 79.33 78.98 62.74
May to July (1.89) (0.43) (1.58) (8.72) (2.54) (2.24) (7.77)
Botswana 82.71 85.90 83.96 90.53 86.71 86.54 89.97
June to July (0.21) (0.21) (0.37) (1.10) (0.20) (1.11) (0.99)
Botswana 83.71 89.72 86.63 91.9 90.70 91.05 91.07
May+June (1.06) (0.09) (0.86) 0.21) 0.29) (0.35) (0.60)
to July

between the two areas in the KSC data set limits the amount
of knowledge that can be transferred from one area to another.
The changes in the class spectral signatures (thereby, class
hierarchies) between the two areas also explain the greater gains
offered by the ensemble compared to EM-based methods for
this data set.

For the multitemporal images, it can be seen that the
Botswana data sets benefit from the knowledge in Area 1
data (Table V). The superior classification performance of the
May+June classifier on the July data set shows the utility of
the knowledge transfer framework in a multitemporal scenario.
Note that the May training data were not spatially colocated
with the June and July data, as the scene coverage was some-
what different. The sensitivity of the EM algorithm to its
initialization is clearly seen in the large standard deviations
associated with the classification accuracies of the ML+EM
classifiers for this dataset. However, using the hierarchy along
with the EM helps reduce the effect of poor initialization.

Semisupervised case: Fig. 1 shows the learning curves
for the KSC and the Botswana data sets when the labeled
data are available from Area 2. The error bars denote the
standard deviation of the accuracies measured over five random
samplings of the labeled data. A scaled version of the learning
curves for the top five techniques for the May to June and May
to July temporal datasets is shown in Figs. 2 and 3. It can
be observed from Fig. 1 that the ensemble with the weighted
majority vote does not offer any advantage over the other
classification systems, especially when there is an adequate
amount of labeled data. For the KSC and the Botswana data
sets, examination of the weights assigned to the classifiers of the
ensemble showed that when the number of labeled samples per
class (> 10) was high, the classifiers in the ensemble had almost
equal weights. Hence, the accuracy of the ensemble was limited
by the classification accuracies of its constituent classifiers.

Using the data (labeled and unlabeled) from Area 2 with
the EM to update the statistics of the classifiers improved the
classification accuracy of the original BHC in all cases. Note
that for small amounts of labeled data using the knowledge

from the old area actually yield greater gains in accuracy than
the new BHC (built from the available labeled data).

By adapting the BHC ensemble components via constrained
EM, some members became more effective for the new area.
The weighted majority algorithm was then able to exploit this
differentiation to produce a knowledge transfer framework that
proved a clear winner for small amounts of labeled data (Fig. 1).
While the ML-EM classifiers appear to be quite competitive, the
real benefit of the knowledge transfer framework can be seen
in the harder KSC and the multitemporal Botswana datasets.
These results show that the class hierarchy learned on a related
task is a useful tool for knowledge transfer, especially when
the distribution of data changes significantly between the tasks.
As more labeled data become available from Area 2, new
classifiers trained on that data will eventually match or surpass
the performance of the updated classifiers from Area 1. The
amount of the labeled data from Area 2, which is required
for this crossover, is surprisingly large, thereby validating the
efficacy of our proposed technique.

V. CONCLUSION

We initially believed that the original BHC framework would
be adequate for knowledge transfer, since it provides not only
a class hierarchy but also the feature extractors that are suitable
for resolving the dichotomies involved at the different stages
of the hierarchy. In particular, it should be more effective than
alternative classifiers, including the ML-based approach inves-
tigated earlier. However, in this application, the data character-
istics change fairly substantially from area to area, demanding
more extensive adjustments. The best suited class hierarchies as
well as the most appropriate feature extractors change at least
incrementally as one moves to a new area. We were able to
cater to both these needs by 1) using the weighted majority
combining approach on an ensemble of trees, so that trees,
which are more suitable for the new area, get higher weights,
and 2) using constrained semisupervised EM that can adjust the
feature spaces as well as classification boundaries based on both
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labeled/unlabeled data acquired from the new area. Against
this combination, the alternative of building a new classifier
using a powerful method (ECOC-SVM) was advantageous only
when significant amounts of labeled data were available from
the new areas. In addition, our approaches provide computa-
tional advantages, since fewer iterations are required for model
parameters to converge because of good initialization based
on prior knowledge. This study can be expanded when more
hyperspectral data are available, especially to determine how
the effectiveness of the knowledge transfer degrades on aver-
age, as the spatial/temporal separation of data sets is increased
systematically.
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